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SOME NUMERICAL COMPUTATIONS 
CONCERNING SPINOR ZETA FUNCTIONS IN GENUS 2 

AT THE CENTRAL POINT 

WINFRIED KOHNEN AND MICHAEL KUSS 

ABSTRACT. We numerically compute the central critical values of odd qua- 
dratic character twists with respect to some small discriminants D of spinor 
zeta functions attached to Seigel-Hecke eigenforms F of genus 2 in the first 
few cases where F does not belong to the Maass space. As a result, in the 
cases considered we can numerically confirm a conjecture of B6cherer, accord- 
ing to which these central critical values should be proportional to the squares 
of certain finite sums of Fourier coefficients of F. 

1. INTRODUCTION 

In [3], B6cherer made an interesting conjecture concerning central critical values 
of odd quadratic character twists of spinor zeta functions attached to cuspidal 
Siegel-Hecke eigenforms of genus 2. 

More precisely, let F be a nonzero cuspidal Hecke eigenform of even integral 
weight k w.r.t. the Siegel modular group F2 := Sp2(Z) and denote by ZF(S) 
(Re(s) > 0) its spinor zeta function. Recall [2] that ZF(s) completed with ap- 
propriate F-factors has a meromorphic continuation to C and is invariant under 
s 4 2k - 2 - s. Let ZF(S, XD) (Re(s) > 0) be the twist of ZF(s) by the quadratic 
character XD - (), where D < 0 is a fundamental discriminant. Assume that 
ZF (s, XD) enjoys similar analytic properties as ZF (s). Then according to [3], there 
should exist a constant CF > 0, depending only on F, such that 

(1) ZF(k - 1, XD)CFDI-k a(T) 
2 

{T>O I discr T=D}/I' 

where a(T) (T a positive definite half-integral (2,2)-matrix) is the T-th Fourier 
coefficient of F, e(T) := #{U E F1I T[U] = T} (with F1 := SL2(Z), T[U] = UtTU) 
is the order of the unit group of T and the summation in (1) extends over all T 
with discriminant equal to D, modulo the action T - T[U] by F1. 

In [3], Bocherer proved his conjecture in the case where F is the Maass lift of a 
Hecke eigenform f of weight 2k - 2 w.r.t. F1. The proof combines four inputs: i) 
the fact that ZF(s) = -(s - k + 1)((s - k + 2)L(f, s), where L(f, s) is the Hecke 
L-function of f [5]; ii) Waldspurger's theorem [13] on the relation between central 
critical values of quadratic twists of L(f, s) and squares of Fourier coefficients of 
modular forms of half-integral weight; iii) the explicit description of the Maass 
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lift on the level of Fourier coefficients [2]; and finally iv) Dirichlet's classical class 
number formula. 

Later on, B6cherer and Schulze-Pillot [4] proved an identity similar to (1) in the 
case of levels, where now F is the Yoshida lift of an elliptic cusp form. 

Also in [3], a formula like (1) in the case where F is a Siegel- or Klingen- 
Eisenstein series was shown to be true. 

The proof in all the above cases makes essential use of the fact that the spinor 
zeta function in question is a product of "known" L-series. 

To the best of our knowledge, nothing regarding Bdcherer's conjecture seems to 
be known in the case where F is a "true" Siegel modular form, i.e., is not a lift of 
an automorphic form on GL2 (and so ZF(s) is not expected to split). 

In the present paper, we would like to present some numerical data supporting 
the conjecture for small values of D in the first few "nontrivial" cases when F is 
of weight 20, 22, 24 resp. 26 and is not a Maass lift. It turns out that for those F 
and for D = -3, -4, -7, -8 identity (1) numerically is true at least up to 5 digits 
with some constant CF > 0 independent of D (Thm., ?4; numerical data are given 
in ?5). 

The first ingredient in the computation is a certain series representation (found 
by the first author many years ago) for central critical values of spinor zeta functions 
supposing "good" analytic properties of ZF (s, XD) as required in the conjecture. 
We were kindly informed by D. Goldfeld that this series representation can also be 
derived from the more general work of Lavrik [10] when appropriately specialized. 
The formula for computing ZF(k - 1, XD) is given in ?2. 

Note that the holomorphic continuation of ZF(s, XD) was proved in [6],[7] (using 
some round-about via Rankin-Dirichlet series) under the assumption that the first 
Fourier-Jacobi coefficient of F is nonzero. The latter condition is satisfied at least 
for all F with k < 32 according to Skoruppa [12]. The functional equation, however, 
was proved only very recently in [9]. 

The second main ingredient, which is entirely due to the second author, is the 
computation of the eigenvalues AF(p) (p a prime < 1000) and AF(p2) (p a prime 
< 71) under the usual Hecke operators Tp resp. Tp2 of the F in question, following 
the method of Skoruppa [12] and an appropriate C++ computer program. This is 

presented in ?3. 
In ?4, the results of ??2 and 3 are combined to calculate ZF(k - 1, XD) for the 

F and D in question with "good" accuracy. For an estimation of the error term 
we use the bounds for the eigenvalues of F implied by the Ramanujan-Petersson 
conjecture, for the latter cf. [14]. 

We finally remark that we have also numerically re-checked (1) using the identity 
given in ?2 in case F is of weight 20, resp. 22, and is in the Maass space. We have 
not included the details here. 

2. A SERIES REPRESENTATION FOR CENTRAL VALUES 

OF SPINOR ZETA FUNCTIONS 

Let k E 2N and write Sk(F2) for the space of Siegel cusp forms of weight k w.r.t. 

F2. If F e Sk (F2) is a nonzero Hecke eigenform, we let 

(2) ZF(s) = J 
ZF,p(p-8)-l (Re(s) > 0) 

p prime 
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be the spinor zeta function of F, where 

ZF,p(X) = 1 - AF(p)X + (AF(p)2 - AF(p) - p2k-4)X2 
- AF(p)p2k-3X3 + p4k-6X4 

is the local spinor polynomial at p and AF(p) resp. AF(p2) are the eigenvalues of F 
under the usual Hecke operator Tp resp. Tp2. 

According to Andrianov [2] the function 

ZF(s) = (27r)-2s'(s)F(s - k + 2)ZF(s) 
has a meromorphic continuation to C and is invariant under s -* 2k - 2 - s. 
It is holomorphic everywhere if F is not contained in the Maass space (which is 
equivalent to saying ZF(s) is not of the form ZF(s) = C(s - k + 1)((s - k + 2) 
x L(f, s), where f is a normalized cuspidal Hecke eigenform of weight 2k - 2 w.r.t. 
F1, and L(f, s) is its associated Hecke L-function [5]). 

If D < 0 is a fundamental discriminant, we define the twist of ZF(s) by XD as 

(3) ZF(s,XD):= JJ ZF,p(XD(P)P-s)-1 (Re(s) > 0). 
p prime 

We denote the n-th coefficient of the Dirichlet series ZF(S, XD) by AF,D(n). 
We put 

Z(s, XD) ((-2s (s)F(s 
- k + 2)ZF(s, XD) (Re(s) > 0). 

If F is in the Maass space, then by well-known properties of twists of ((s) and 
L(f, s), , s), Z(s, XD) extends to an entire function, is of rapid decay for Im(s) -+ 00 
and is invariant under s - 2k - 2 - s. It is very natural to expect that the same 
holds for general F (cf. [3]). In fact, if F is not in the Maass space and the first 
Fourier-Jacobi coefficient of F is nonzero, this was proved in [6],[7],[9] (using the 
fact 110|112ZF(s) = DF(S), where 01 is the first Fourier-Jacobi coefficient of F and 

DF(S) is a Rankin type Dirichlet series formed out of the Fourier-Jacobi coefficients 
of F introduced in [8]). 

Let F E Sk(F2) be a Hecke eigenform such that ZF (S, XD) has the above analytic 
properties. Using the integral transform 

c+ioo 

r 
L F(s)F(s - k + 2)y-"ds = 

2y-+lKk2(2x/ 
) (y > , c > k- 2), 

c-ioo 

where Kk-2(y) denotes the modified Bessel function of order k - 2, we have for 
y > 0 and c> 0 

c+ioo 
2iriJ Z0(s, XD)Y-sds 

c+ioo 00 

_ )-D2 r(s)F(s - k + 2)E AF,D(n)n-syds (4) ioo n=l 
00 c+ioo 

S AF,D(n)I r(s)r(s - k + 2)( ) ds 
n=l c-ioo 

= y 2+fF, D(y), 
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where 
Oo 

fF,D(y) 2( ?) EAF,D(n)n- Kk-2( ID 
n=l 

Since Z}(s, XD) is holomorphic and of rapid decay for Im s -+ co, we may shift the 
path of integration in (4) to the line c = k - 1. We replace y by - and apply the 
functional equation of Z} (s, XD) to obtain 

y 1fFD(i) 

.k-1+ioo -+ioo 

= k-i Z(s, XD)ysds = 1 Z*(2k 
- 2 - s, XD)ysds 

Sk-1-ioo 
Jk-l-ioo 

= ]k-1-i Z (s, XD)y2k-2-ds = y2 fF,D(y), 
J k-1-ioo 

i.e., the function fF,D(Y) satisfies the functional equation fF,D(~) = yfF,D(Y). 
Using the usual splitting trick and the formula 

2 Kk-2(2 Fy))y2-dy = r(s)F(s 
- k + 2) (Re(s) > k - 2), 

we conclude for Re(s) > 0 that 

(5) 

Z(s, XD) = 2(r 
-2s 

SAF,D(n)n- j Kk-2(2 '-)y dy 
n=l 

= 2()28 E F,D(n)n-S 4 
s- +1 

Kk-2( s-dy 
n=10 

=j fF,D(y)ys~ dy =c fF,D (y)(y -2- + Y )dy. 
O- 1)y 

As fF,D (Y) is of exponential decay for y -? oc, the right hand side of (5) has 
a holomorphic continuation to the whole complex plane, and (5) is valid for all 
s C C. 

Setting s = k - 1 in (5), we get the formulas 

Z(k - I, XD) =4(42 )+1 
jc 

cc -idy 
DTE 

AFD(n)n 
'+lgk-2(nI)y- n=l 

n=l1 1 

=4( 47r'2 - k+1 
••KA-,-(n)-- -)y-dy. n=l -n 

Hence 

4(2)k 

00 

(7) ZF(k- 1, XD) D I2 E AD()n-k+ Kk-2 )y -ldy, 
n=- 1n 

where the exponential decay of Kk-2(y) for y -+ oc justifies the interchange of 
summation and integration in (6). 
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3. NUMERICAL COMPUTATIONS 

Let Mk(Fl) be the space of elliptic modular forms of weight k w.r.t. F1 and 

Sk(F1) be the subspace of cusp forms in Mk(F1). For 
• 

E C, Im(7) > 0, write 

q = exp(2lri-), and let 

00 

A q J 7(1- qn)24 
n=l 

be the Ramanujan A-function in S12(F1) and 

Ek 
=1-24kk E2k =1- B2kE 2k-1 (n)qn (k E Z, k 2, 2k-1 (n) 

= 
dlnd2k-1 

n=1 

B2k = 2kth Bernoulli number) 

be the normalized Eisenstein series in M2k (F1) 
If Jcusp denotes the space of Jacobi cusp forms on F1 of index 1 and weight k, 

the Maass space [11] is the image of the Hecke equivariant embedding V : Jkusp 
Sk (F2) defined by 

= 

- 
CO(D)q 

r 
2-D)/4 

r 

D,rCZ,D<O 
D-r2 mod 4 

- 

a(nrr,'m)qnrqmr, n,r,mEZ 
r2 -4mn<0, 

n,m>0 

where 

2 - 4mn 
a(n, r,m) 

:= d5k-1c( d2 ) 

dl(n,r,m) 

and 

( = exp(27riz)(z E C), q' = exp(2riT')(T' E C, Im(r') > 0). 

By 
10o 

resp. q12 we denote the Jacobi cusp forms in the one-dimensional spaces 
JCUs resp. JCUsp normalized to C(-3) 1. 

10,1,Iresp. "12,1 The first cuspidal Hecke eigenforms for genus 2 that do not belong to the Maass 
space appear in weight 20, 22, 24, resp. 26, and are denoted T20, ... , T26b in [12]. 
In [12], Skoruppa gives explicit formulas for them (involving the forms V(?), where 

0 are appropriate Jacobi forms) and calculates some of their Fourier coefficients. 
Note that there is a misprint in the formula for T22; the corrected formula is 

T22 = -25 . 3 .5.7. 1423 
-V(?10)V(q12) 

• 
V(-q1i2E1o + -0IoE6 + 24 - 3 

.-61. 
-10A). 
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To compute the coefficients of the relevant Jacobi forms 0, we proceed slightly 
differently from [12] and try to avoid multiplication of Jacobi modular forms with 
elliptic modular forms. More precisely, the operator D2v is defined by 

OO 

D2v ( P(-1)(r, nm)c(n, r))qn (v E Z, v ) O) 
n=0 r 

where q = Zn,r c(n, r)qn(r E JcusP and 

(k - v- 2)! (k-1)(r, n) = coefficient of t2V in (1 - rt + nt2)-k+l 
(2v)!(k - 2)! 

maps JkCus to Sk+2v(Fl) [5]. 
We consider the system of equations {D2v(f) = gf,,} where f is one of the 

Jacobi forms 

o10, o10E4, 10E6, o10E10, 10E14, 410E16, 10A, 10E6, 
2 

o0E2, 10oAE4, 
b12, 12E8, 12E10, 012E2, 412A, 012E14, 

v E {0, 2, 4} and gf,, is the corresponding elliptic modular form which is determined 
by its first coefficients, e.g., we have 

Do (~10) 
= 0, )2(010) 

= 20A, D4(010) = 0, 

Do0(12) = 12A, 92 (012) = 0, D4(012) = 196AE4. 

We solve the system recursively for the Fourier coefficients of the Jacobi forms. 
(To start the recursion the first Fourier coefficients of ?10, 012 are taken from [5].) 
This method needs only O(IDI 2) operations to calculate a complete table of Fourier 
coefficients up to a "large" discriminant. Hence it is less "expensive" than the usual 

multiplication of Jacobi forms and elliptic modular forms (O(ID 2)). 
Proceeding in this way and using a C++ computer program, we computed the 

Fourier coefficients C(D) of the Jacobi forms in question for DI I( 3 000 000. Then 
we are able to compute any Fourier coefficient a(n, r, m) of T20, 

..., 
T26b with 

discriminant 4mn - r2 < 3 000 000. 
In [12] Skoruppa calculates the eigenvalues AF(p), AF(p2) (p prime) of a Hecke 

eigenform 

F = a(n, r, r)qnq'm E Sk(F2) 
r,n,mEZ, 

r2 -4mn<0, 
n,m>O 

by means of the formulas 

AF(p)a(1, 1, 1) = a(p,p,p) + pk-2(1 + ())a(1, 1,1) 

and 

AF(p2)a(1, 1, 1) 

S[AF(P)2- AF(p)pk-2(1 + (1)) 
_ 2k-3 

?p2k-4((3) 

+ (p)2)]a(1, 1,1) 

- 
pk-2a(l,p,p2) 

_ pk-2 a(1 + + A2,p(1 + 2v),p2), 
v mod p, 

1+v+v2 0 mod p 

which are based on Andrianov's results in [2]. 
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Using another C++ computer program, we computed the eigenvalues AF(p) for 
p < 1000 prime and AF(p2) for p < 71 prime of F = T20, ... , 26b from the above 
formulas. 

4. SUMMING UP 

By (7) we have 

00 

ZF(k - 1, XD) = AF,D (n)gD(n), 
n=l 

where 

(8) gD(n) = 
Dk(k+2), 

-k+ Kk-2(4I -)y-ldy. /OO 

Now gD(n) is of exponential decay for n -+ oc and AF,D(n) is of polynomial growth. 
Thus for a numerical approximation of ZF(k - 1, XD) it is important to calculate 
as many terms as possible in the sum for small n (say n < N for some N--we will 
later choose N = 4000), while for large n (n > N) the total sum of all terms with 
n > N is rather small. Hence we approximate ZF(k - 1, XD) by 

ZF,D(k - 1) E AF,D (n)gD(n), 

n has no prime 
divisor> 1 000 

where the values of AF,D(n) can be calculated from the Euler product of ZF,D (s8, XD) 
for n < 712. 

Suppose there are positive constants C1, C2, a, 0 such that the estimates 
IAF(p)l ( C1 - p" (p prime) and IAF(n)I < C2 - n (n > N) hold. Then the error term 

e(F, D) = ZF,D(k - 1) - ZF,D(k - 1) 

can be estimated by 

Je(F,D) | E I AF,D(Vp)IgD(uP) 
p>1 000 
p prime 

(9) 1<v<N/p 

+ AFD (vn)IKk-2( I )Y-dy. 
n>N 

Suppose now that N < 10072. Then clearly for the first sum E1 in the above 
equation we have the estimate 

1= IAF,D()AF)(P)F9D(VP) 
p>1 000 
p prime 

1?v,<N/p 

c1 E IAF,D(v)paPgD(VP)). 
p>1 000 
p prime 

1<vNl/p 
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The second sum E2 in (9) satisfies 

IDIk (k-2)! 

•ncl 

"0 
2 

4(27r)kE 
"•2 F,D(n)ln -k+ Kk-2 I)y-dy 

n>N 

(0C2 S -k+1 Kk-2(4)21dy 
n>N 

(c2 f Kzk-2( ) dy 
n>N n 

/m+1 

C2 5E E Kk-2(4 DiY)y3-dy 
n>N m>n m 

c2 E(m 
- N)I Kk-2( 4D)y/3-dy m>N Jm 

•<C2zN 
Kk_2(4-)y3- (y 

-N)dy. 
+1 DI 

For the estimation of the dominating term E1 in e(F, D) we use the result of 
Weissauer [14] that any eigenform F E Sk (F2) which does not belong to the Maass 
space fulfills the Ramanujan-Petersson conjecture (i.e., all complex roots of ZF,p 
have absolute value p -k). Thus we have to choose C1 = 4, a = k- 3 to obtain 
the best estimate for Z1 possible by our methods. 

The contribution of E2 to e(F, D) is absorbed by E1 if N is large enough, so we 
do not have to use the optimal estimate for AF(n). One obtains a very crude (but 
simple and for our purpose sufficient) estimate for AF(n) from the Ramanujan- 
Petersson conjecture if one uses ao(n) < n, namely 

I7F) (d) o()nk- k-i = o(k- nk+ 
dIn dIn 

Thus we set C2 = 1 and ~ = k + . 

We choose N = 4000 (then E2 is dominated by E, for the D in question) and 
calculate the numerical approximations of ZF (k-1, XD) and the corresponding error 
terms using Mathematica. From (1) we computed the constants CF for F = T20, 
... , T26b and D = -3, -4, -7, -8. The numerical results have been checked using 
Maple. 

We obtain 

Theorem. For F = T20... , T26b there are constants CF such that equation (1) 

(i.e., B'cherer's conjecture) holds for D = -3, -, 4 - 7, -8 numerically up to 5 

digits. 
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5. NUMERICAL DATA 

TABLE 1. Approximate constants CF for F = T20, T22 

D Cr20 Cr22 
-3 2.067215202868 8 - 1011 + 0.5 - 10-2 1.3056685268290 - 1012 ? 0.5 10-1 
-4 2.067215202868 8 - 1011 ? 0.5 - 10-2 1.305668526829 0 - 1012 ? 0.5. 10-1 
-7 2.067215202 9206 - 1011 ? 2.9 - 101 1.3056685268 295 - 1012 ? 1.1 . 101 
-8 2.067215202 8644 - 1011 ? 3.1 - 101 1.305668 5179067 - 1012 ? 1.1 . 106 

TABLE 2. Approximate constants CF for F = T24a, T24b 

D C24a CT24b 
-3 1.0953372445194 - 1013 ? 0.5 - 100 6.138805283929 6 - 1011 ? 0.5 - 10-2 

-4 1.095337244519 4 - 1013 ? 0.5 100 6.138805283929 6 - 1011 + 0.5 - 10-2 
-7 1.0953372445 111 . 1013 ? 8.7 - 102 6.1388052 891963 - 1011 ? 9.3 - 103 
-8 1.09533724 45386 - 1013 ? 2.6 - 104 6.1388 034612038 - 1011 1.3 - 106 

TABLE 3. Approximate constants CF for F = T26a, T26b 

D CT26a CT26 
-3 9.615528574589 1 

? 
1013 ? 0.5 - 100 6.232883950541 7 1012 ? 0.5 . 10-1 

-4 9.6155285745891 - 1013 + 0.5 100 6.2328839505417 - 1012 ? 0.5. 10-1 
-7 9.6155285746522. 1013 ? 1.1 . 104 6.232883950 5729 - 1012 + 2.3 - 102 
-8 9.615528 5333968 - 1013 + 8.2. 106 6.232883 9821394 - 1012 ? 1.6 - 105 

TABLE 4. The first Fourier coefficients of T20, ... ,T26b 

D n, r, m T20 o22 T24a T24b T26a T26b 

-3 1,1,1 1 1 1 3 1 3 
-4 1,0,1 4 -12 -16 76 -8 124 
-7 1,1, 2 56 1344 4408 -616 -7456 51632 
-8 1, 0, 2 2 616 216 44 256 -2 904 15216 -109 752 

-11 1,1,3 -55077 409779 -1 147701 2122593 -1 180509 7299177 
-12 1,0,3 408832 468448 -378272 11995968 3505408 -39833376 
-12 2,2,2 -840960 -2215680 -795324 18309504 9218340 495227520 
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TABLE 5. The first eigenvalues of T20 

2 -840960 

3 346 935 960 

5 -5 232 247240500 

7 2 617414076 964400 

11 1427823 701421564 744 

13 -83 773 835 478 688 698 980 

17 14156088476 175 218899620 

19 146 957 560 176 221097 673 720 

23 -7159245 922546 757 692913520 

29 1055 528 218 470 800 414110149180 

31 4 031470 549 468 367 403 585 068 224 

37 -154 882 657 977 740 251483 442 365 940 

41 1 126 683 124 934 949 617 518 831346 964 

43 74 572 686 686194 644 813168 430600 

47 -13 773 335 595 379 978 013 820 602 730 720 

53 29 292 488 702 536161643 591933 657 260 

59 521943213201995351655113144025960 

61 896 978 197 899 858 751399 574 623 768 444 

67 -2 921787 486 641381474 027 809 454 434 280 

22 248 256 200 704 

32 -452 051040 393 665 991 

52 -94 655 785 156 653 029 446 859 375 

72 -5 501629 950 184 780 949 434 983 315 951 

112 -126 258 221861417 704 499 584 077 355164 268151 

132 2528254555352510520887 488261241887242369 

172 262144 933 510 286 336 089 464 293 262 250165 947 750 889 

192 -283 417 759 450 334 375 466 210 009 895 464 677 379 295 086 759 

232 127 862 428 522 278 879 932 688110 084 314 434 400 497 569 566129 

292 408 550 299 154 535 330 723 926 336 201059 419 422 405 306 949 883 361 

312 -9 417 686 481 892 622 568 784 061821415 683 057 728 289 096 885 473 471 

372 4 270 657 975 661 931417 960 508 434 757 260 969 748 219 593 839 247 065169 

412 129 620 395 091878 626 890 240 343 719 327 738119 688 391311944 613 269 369 

432 -2 118391905 744174698890014439813915105652042393393982400772151 

472 10 717 867 956150 312 430187 083192 735 560 357 439 349 298 395 760 667 696 609 

532 -6359983052359692969866068986893310598482880773029488944413754191 

592 159291906542794821742879348124552646753906149121778952350318431721 

612 -653805853261332407170328486766159640869797840457778124369821 593951 

672 25254882862606589034647035623760404781292970925413106240956567868089 
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