SOME NUMERICAL COMPUTATIONS CONCERNING SPINOR ZETA FUNCTIONS IN GENUS 2 AT THE CENTRAL POINT

WINFRIED KOHNEN AND MICHAEL KUSS

Abstract

We numerically compute the central critical values of odd quadratic character twists with respect to some small discriminants D of spinor zeta functions attached to Seigel-Hecke eigenforms F of genus 2 in the first few cases where F does not belong to the Maass space. As a result, in the cases considered we can numerically confirm a conjecture of Böcherer, according to which these central critical values should be proportional to the squares of certain finite sums of Fourier coefficients of F.

1. Introduction

In [3], Böcherer made an interesting conjecture concerning central critical values of odd quadratic character twists of spinor zeta functions attached to cuspidal Siegel-Hecke eigenforms of genus 2.

More precisely, let F be a nonzero cuspidal Hecke eigenform of even integral weight k w.r.t. the Siegel modular group $\Gamma_{2}:=\mathrm{Sp}_{2}(\mathbb{Z})$ and denote by $Z_{F}(s)$ $(\operatorname{Re}(s) \gg 0)$ its spinor zeta function. Recall [2] that $Z_{F}(s)$ completed with appropriate Γ-factors has a meromorphic continuation to \mathbb{C} and is invariant under $s \mapsto 2 k-2-s$. Let $Z_{F}\left(s, \chi_{D}\right)(\operatorname{Re}(s) \gg 0)$ be the twist of $Z_{F}(s)$ by the quadratic character $\chi_{D}=\left(\frac{D}{.}\right)$, where $D<0$ is a fundamental discriminant. Assume that $Z_{F}\left(s, \chi_{D}\right)$ enjoys similar analytic properties as $Z_{F}(s)$. Then according to [3], there should exist a constant $C_{F}>0$, depending only on F, such that

$$
\begin{equation*}
Z_{F}\left(k-1, \chi_{D}\right)=C_{F}|D|^{1-k}\left(\sum_{\{T>0 \mid \text { discr } T=D\} / \Gamma_{1}} \frac{a(T)}{\varepsilon(T)}\right)^{2}, \tag{1}
\end{equation*}
$$

where $a(T)$ (T a positive definite half-integral (2,2)-matrix) is the T-th Fourier coefficient of $F, \varepsilon(T):=\#\left\{U \in \Gamma_{1} \mid T[U]=T\right\}\left(\right.$ with $\left.\Gamma_{1}:=\mathrm{SL}_{2}(\mathbb{Z}), T[U]=U^{t} T U\right)$ is the order of the unit group of T and the summation in (1) extends over all T with discriminant equal to D, modulo the action $T \mapsto T[U]$ by Γ_{1}.

In [3], Böcherer proved his conjecture in the case where F is the Maass lift of a Hecke eigenform f of weight $2 k-2$ w.r.t. Γ_{1}. The proof combines four inputs: i) the fact that $Z_{F}(s)=\zeta(s-k+1) \zeta(s-k+2) L(f, s)$, where $L(f, s)$ is the Hecke L-function of f [5]; ii) Waldspurger's theorem [13] on the relation between central critical values of quadratic twists of $L(f, s)$ and squares of Fourier coefficients of modular forms of half-integral weight; iii) the explicit description of the Maass

[^0]lift on the level of Fourier coefficients [2]; and finally iv) Dirichlet's classical class number formula.

Later on, Böcherer and Schulze-Pillot [4] proved an identity similar to (1) in the case of levels, where now F is the Yoshida lift of an elliptic cusp form.

Also in [3], a formula like (1) in the case where F is a Siegel- or KlingenEisenstein series was shown to be true.

The proof in all the above cases makes essential use of the fact that the spinor zeta function in question is a product of "known" L-series.

To the best of our knowledge, nothing regarding Böcherer's conjecture seems to be known in the case where F is a "true" Siegel modular form, i.e., is not a lift of an automorphic form on GL_{2} (and so $Z_{F}(s)$ is not expected to split).

In the present paper, we would like to present some numerical data supporting the conjecture for small values of D in the first few "nontrivial" cases when F is of weight $20,22,24$ resp. 26 and is not a Maass lift. It turns out that for those F and for $D=-3,-4,-7,-8$ identity (1) numerically is true at least up to 5 digits with some constant $C_{F}>0$ independent of D (Thm., §4; numerical data are given in §5).

The first ingredient in the computation is a certain series representation (found by the first author many years ago) for central critical values of spinor zeta functions supposing "good" analytic properties of $Z_{F}\left(s, \chi_{D}\right)$ as required in the conjecture. We were kindly informed by D. Goldfeld that this series representation can also be derived from the more general work of Lavrik [10] when appropriately specialized. The formula for computing $Z_{F}\left(k-1, \chi_{D}\right)$ is given in $\S 2$.

Note that the holomorphic continuation of $Z_{F}\left(s, \chi_{D}\right)$ was proved in [6], [7] (using some round-about via Rankin-Dirichlet series) under the assumption that the first Fourier-Jacobi coefficient of F is nonzero. The latter condition is satisfied at least for all F with $k \leqslant 32$ according to Skoruppa [12]. The functional equation, however, was proved only very recently in [9].

The second main ingredient, which is entirely due to the second author, is the computation of the eigenvalues $\lambda_{F}(p)(p$ a prime $<1000)$ and $\lambda_{F}\left(p^{2}\right)$ (p a prime <71) under the usual Hecke operators T_{p} resp. $T_{p^{2}}$ of the F in question, following the method of Skoruppa [12] and an appropriate C++ computer program. This is presented in §3.

In $\S 4$, the results of $\S \S 2$ and 3 are combined to calculate $Z_{F}\left(k-1, \chi_{D}\right)$ for the F and D in question with "good" accuracy. For an estimation of the error term we use the bounds for the eigenvalues of F implied by the Ramanujan-Petersson conjecture, for the latter cf. [14].

We finally remark that we have also numerically re-checked (1) using the identity given in $\S 2$ in case F is of weight 20, resp. 22, and is in the Maass space. We have not included the details here.

2. A SERIES REPRESENTATION FOR CENTRAL VALUES OF SPINOR ZETA FUNCTIONS

Let $k \in 2 \mathbb{N}$ and write $S_{k}\left(\Gamma_{2}\right)$ for the space of Siegel cusp forms of weight k w.r.t. Γ_{2}. If $F \in S_{k}\left(\Gamma_{2}\right)$ is a nonzero Hecke eigenform, we let

$$
\begin{equation*}
Z_{F}(s)=\prod_{p \text { prime }} Z_{F, p}\left(p^{-s}\right)^{-1} \quad(\operatorname{Re}(s) \gg 0) \tag{2}
\end{equation*}
$$

be the spinor zeta function of F, where

$$
\begin{aligned}
Z_{F, p}(X)= & 1-\lambda_{F}(p) X+\left(\lambda_{F}(p)^{2}-\lambda_{F}\left(p^{2}\right)-p^{2 k-4}\right) X^{2} \\
& -\lambda_{F}(p) p^{2 k-3} X^{3}+p^{4 k-6} X^{4}
\end{aligned}
$$

is the local spinor polynomial at p and $\lambda_{F}(p)$ resp. $\lambda_{F}\left(p^{2}\right)$ are the eigenvalues of F under the usual Hecke operator T_{p} resp. $T_{p^{2}}$.

According to Andrianov [2] the function

$$
Z_{F}^{\star}(s)=(2 \pi)^{-2 s} \Gamma(s) \Gamma(s-k+2) Z_{F}(s)
$$

has a meromorphic continuation to \mathbb{C} and is invariant under $s \mapsto 2 k-2-s$. It is holomorphic everywhere if F is not contained in the Maass space (which is equivalent to saying $Z_{F}(s)$ is not of the form $Z_{F}(s)=\zeta(s-k+1) \zeta(s-k+2)$ $\times L(f, s)$, where f is a normalized cuspidal Hecke eigenform of weight $2 k-2$ w.r.t. Γ_{1}, and $L(f, s)$ is its associated Hecke L-function [5]).

If $D<0$ is a fundamental discriminant, we define the twist of $Z_{F}(s)$ by χ_{D} as

$$
\begin{equation*}
Z_{F}\left(s, \chi_{D}\right):=\prod_{p \text { prime }} Z_{F, p}\left(\chi_{D}(p) p^{-s}\right)^{-1} \quad(\operatorname{Re}(s) \gg 0) \tag{3}
\end{equation*}
$$

We denote the n-th coefficient of the Dirichlet series $Z_{F}\left(s, \chi_{D}\right)$ by $\lambda_{F, D}(n)$.
We put

$$
Z_{F}^{\star}\left(s, \chi_{D}\right):=\left(\frac{2 \pi}{|D|}\right)^{-2 s} \Gamma(s) \Gamma(s-k+2) Z_{F}\left(s, \chi_{D}\right) \quad(\operatorname{Re}(s) \gg 0)
$$

If F is in the Maass space, then by well-known properties of twists of $\zeta(s)$ and $L(f, s), Z_{F}^{\star}\left(s, \chi_{D}\right)$ extends to an entire function, is of rapid decay for $\operatorname{Im}(s) \rightarrow \infty$ and is invariant under $s \mapsto 2 k-2-s$. It is very natural to expect that the same holds for general F (cf. [3]). In fact, if F is not in the Maass space and the first Fourier-Jacobi coefficient of F is nonzero, this was proved in [6],[7],[9] (using the fact $\left\|\phi_{1}\right\|^{2} Z_{F}(s)=D_{F}(s)$, where ϕ_{1} is the first Fourier-Jacobi coefficient of F and $D_{F}(s)$ is a Rankin type Dirichlet series formed out of the Fourier-Jacobi coefficients of F introduced in [8]).

Let $F \in S_{k}\left(\Gamma_{2}\right)$ be a Hecke eigenform such that $Z_{F}\left(s, \chi_{D}\right)$ has the above analytic properties. Using the integral transform

$$
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \Gamma(s) \Gamma(s-k+2) y^{-s} \mathrm{~d} s=2 y^{-\frac{k}{2}+1} K_{k-2}(2 \sqrt{y}) \quad(y>0, c>k-2)
$$

where $K_{k-2}(y)$ denotes the modified Bessel function of order $k-2$, we have for $y>0$ and $c \gg 0$

$$
\begin{align*}
& \frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} Z_{F}^{\star}\left(s, \chi_{D}\right) y^{-s} \mathrm{~d} s \\
& \quad=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty}\left(\frac{2 \pi}{|D|}\right)^{-2 s} \Gamma(s) \Gamma(s-k+2) \sum_{n=1}^{\infty} \lambda_{F, D}(n) n^{-s} y^{-s} \mathrm{~d} s \tag{4}\\
& \quad=\sum_{n=1}^{\infty} \lambda_{F, D}(n) \frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \Gamma(s) \Gamma(s-k+2)\left(\frac{4 \pi^{2} n y}{D^{2}}\right)^{-s} \mathrm{~d} s \\
& \quad=y^{-\frac{k}{2}+1} f_{F, D}(y),
\end{align*}
$$

where

$$
f_{F, D}(y)=2\left(\frac{4 \pi^{2}}{D^{2}}\right)^{-\frac{k}{2}+1} \sum_{n=1}^{\infty} \lambda_{F, D}(n) n^{-\frac{k}{2}+1} K_{k-2}\left(\frac{4 \pi \sqrt{n y}}{|D|}\right) .
$$

Since $Z_{F}^{\star}\left(s, \chi_{D}\right)$ is holomorphic and of rapid decay for $\operatorname{Im} s \rightarrow \infty$, we may shift the path of integration in (4) to the line $c=k-1$. We replace y by $\frac{1}{y}$ and apply the functional equation of $Z_{F}^{\star}\left(s, \chi_{D}\right)$ to obtain

$$
\begin{aligned}
& y^{\frac{k}{2}-1} f_{F, D}\left(\frac{1}{y}\right) \\
& \quad=\frac{1}{2 \pi i} \int_{k-1-i \infty}^{k-1+i \infty} Z_{F}^{\star}\left(s, \chi_{D}\right) y^{s} \mathrm{~d} s=\frac{1}{2 \pi i} \int_{k-1-i \infty}^{k-1+i \infty} Z_{F}^{\star}\left(2 k-2-s, \chi_{D}\right) y^{s} \mathrm{~d} s \\
& \quad=\frac{1}{2 \pi i} \int_{k-1-i \infty}^{k-1+i \infty} Z_{F}^{\star}\left(s, \chi_{D}\right) y^{2 k-2-s} \mathrm{~d} s=y^{\frac{3}{2} k-1} f_{F, D}(y),
\end{aligned}
$$

i.e., the function $f_{F, D}(y)$ satisfies the functional equation $f_{F, D}\left(\frac{1}{y}\right)=y^{k} f_{F, D}(y)$.

Using the usual splitting trick and the formula

$$
2 \int_{0}^{\infty} K_{k-2}(2 \sqrt{y}) y^{s-\frac{k}{2}} \mathrm{~d} y=\Gamma(s) \Gamma(s-k+2) \quad(\operatorname{Re}(s)>k-2)
$$

we conclude for $\operatorname{Re}(s) \gg 0$ that

$$
\begin{align*}
Z_{F}^{\star}\left(s, \chi_{D}\right) & =2\left(\frac{2 \pi}{|D|}\right)^{-2 s} \sum_{n=1}^{\infty} \lambda_{F, D}(n) n^{-s} \int_{0}^{\infty} K_{k-2}(2 \sqrt{y}) y^{s-\frac{k}{2}} \mathrm{~d} y \tag{5}\\
& =2\left(\frac{2 \pi}{|D|}\right)^{-2 s} \sum_{n=1}^{\infty} \lambda_{F, D}(n) n^{-s}\left(\frac{4 \pi^{2} n}{D^{2}}\right)^{s-\frac{k}{2}+1} \int_{0}^{\infty} K_{k-2}\left(\frac{4 \pi \sqrt{n y}}{|D|}\right) y^{s-\frac{k}{2}} \mathrm{~d} y \\
& =\int_{0}^{\infty} f_{F, D}(y) y^{s-\frac{k}{2}} \mathrm{~d} y=\int_{1}^{\infty} f_{F, D}(y)\left(y^{\frac{3}{2} k-2-s}+y^{s-\frac{k}{2}}\right) \mathrm{d} y
\end{align*}
$$

As $f_{F, D}(y)$ is of exponential decay for $y \rightarrow \infty$, the right hand side of (5) has a holomorphic continuation to the whole complex plane, and (5) is valid for all $s \in \mathbb{C}$.

Setting $s=k-1$ in (5), we get the formulas

$$
\begin{align*}
Z_{F}^{\star}\left(k-1, \chi_{D}\right) & =4\left(\frac{4 \pi^{2}}{D^{2}}\right)^{-\frac{k}{2}+1} \int_{1}^{\infty} \sum_{n=1}^{\infty} \lambda_{F, D}(n) n^{-\frac{k}{2}+1} K_{k-2}\left(\frac{4 \pi \sqrt{n y}}{|D|}\right) y^{\frac{k}{2}-1} \mathrm{~d} y \\
& =4\left(\frac{4 \pi^{2}}{D^{2}}\right)^{-\frac{k}{2}+1} \sum_{n=1}^{\infty} \int_{1}^{\infty} \lambda_{F, D}(n) n^{-\frac{k}{2}+1} K_{k-2}\left(\frac{4 \pi \sqrt{n y}}{|D|}\right) y^{\frac{k}{2}-1} \mathrm{~d} y \tag{6}\\
& =4\left(\frac{4 \pi^{2}}{D^{2}}\right)^{-\frac{k}{2}+1} \sum_{n=1}^{\infty} \lambda_{F, D}(n) n^{-k+1} \int_{n}^{\infty} K_{k-2}\left(\frac{4 \pi \sqrt{y}}{|D|}\right) y^{\frac{k}{2}-1} \mathrm{~d} y .
\end{align*}
$$

Hence

$$
\begin{equation*}
Z_{F}\left(k-1, \chi_{D}\right)=\frac{4(2 \pi)^{k}}{|D|^{k}(k-2)!} \sum_{n=1}^{\infty} \lambda_{F, D}(n) n^{-k+1} \int_{n}^{\infty} K_{k-2}\left(\frac{4 \pi \sqrt{y}}{|D|}\right) y^{\frac{k}{2}-1} \mathrm{~d} y \tag{7}
\end{equation*}
$$

where the exponential decay of $K_{k-2}(y)$ for $y \rightarrow \infty$ justifies the interchange of summation and integration in (6).

3. Numerical computations

Let $M_{k}\left(\Gamma_{1}\right)$ be the space of elliptic modular forms of weight k w.r.t. Γ_{1} and $S_{k}\left(\Gamma_{1}\right)$ be the subspace of cusp forms in $M_{k}\left(\Gamma_{1}\right)$. For $\tau \in \mathbb{C}, \operatorname{Im}(\tau)>0$, write $q=\exp (2 \pi i \tau)$, and let

$$
\Delta=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}
$$

be the Ramanujan Δ-function in $S_{12}\left(\Gamma_{1}\right)$ and

$$
\begin{gathered}
E_{2 k}=1-\frac{4 k}{B_{2 k}} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n} \quad\left(k \in \mathbb{Z}, k \geqslant 2, \sigma_{2 k-1}(n)=\sum_{d \mid n} d^{2 k-1},\right. \\
\left.B_{2 k}=2 k \text { th Bernoulli number }\right)
\end{gathered}
$$

be the normalized Eisenstein series in $M_{2 k}\left(\Gamma_{1}\right)$.
If $J_{k, 1}^{\text {cusp }}$ denotes the space of Jacobi cusp forms on Γ_{1} of index 1 and weight k, the Maass space [11] is the image of the Hecke equivariant embedding $V: J_{k, 1}^{\text {cusp }} \hookrightarrow$ $S_{k}\left(\Gamma_{2}\right)$ defined by

$$
\begin{aligned}
\phi & =\sum_{\substack{D, r \in \mathbb{Z}, D<0 \\
D \equiv r^{2} \bmod 4}} C_{\phi}(D) q^{\left(r^{2}-D\right) / 4} \zeta^{r} \\
& \sum_{\substack{n, r, m \in \mathbb{Z} \\
r^{2}-4 m n<0, n, m>0}} a(n, r, m) q^{n} \zeta^{r} q^{\prime m},
\end{aligned}
$$

where

$$
a(n, r, m):=\sum_{d \mid(n, r, m)} d^{k-1} C_{\phi}\left(\frac{r^{2}-4 m n}{d^{2}}\right)
$$

and

$$
\zeta=\exp (2 \pi i z)(z \in \mathbb{C}), \quad q^{\prime}=\exp \left(2 \pi i \tau^{\prime}\right)\left(\tau^{\prime} \in \mathbb{C}, \operatorname{Im}\left(\tau^{\prime}\right)>0\right)
$$

By ϕ_{10} resp. ϕ_{12} we denote the Jacobi cusp forms in the one-dimensional spaces $J_{10,1}^{\text {cusp }}$, resp. $J_{12,1}^{\text {cusp }}$, normalized to $C(-3)=1$.

The first cuspidal Hecke eigenforms for genus 2 that do not belong to the Maass space appear in weight $20,22,24$, resp. 26 , and are denoted $\Upsilon_{20}, \ldots, \Upsilon_{26 b}$ in [12]. In [12], Skoruppa gives explicit formulas for them (involving the forms $V(\phi)$, where ϕ are appropriate Jacobi forms) and calculates some of their Fourier coefficients. Note that there is a misprint in the formula for Υ_{22}; the corrected formula is

$$
\begin{aligned}
\Upsilon_{22}= & -2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 1423 \cdot V\left(\phi_{10}\right) V\left(\phi_{12}\right) \\
& +V\left(-\frac{5}{2 \cdot 3} \phi_{12} E_{10}+\frac{11}{2 \cdot 3} \phi_{10} E_{6}^{2}+2^{4} \cdot 3 \cdot 61 \cdot \phi_{10} \Delta\right) .
\end{aligned}
$$

To compute the coefficients of the relevant Jacobi forms ϕ, we proceed slightly differently from [12] and try to avoid multiplication of Jacobi modular forms with elliptic modular forms. More precisely, the operator $\mathcal{D}_{2 \nu}$ is defined by

$$
\mathcal{D}_{2 \nu} \phi:=\sum_{n=0}^{\infty}\left(\sum_{r} p_{2 \nu}^{(k-1)}(r, n m) c(n, r)\right) q^{n} \quad(\nu \in \mathbb{Z}, \nu \geqslant 0)
$$

where $\phi=\sum_{n, r} c(n, r) q^{n} \zeta^{r} \in J_{k, m}^{\text {cusp }}$ and

$$
\frac{(k-\nu-2)!}{(2 \nu)!(k-2)!} p_{2 \nu}^{(k-1)}(r, n)=\text { coefficient of } t^{2 \nu} \text { in }\left(1-r t+n t^{2}\right)^{-k+1}
$$

maps $J_{k, 1}^{\text {cusp }}$ to $S_{k+2 \nu}\left(\Gamma_{1}\right)$ [5].
We consider the system of equations $\left\{\mathcal{D}_{2 \nu}(f)=g_{f, \nu}\right\}$ where f is one of the Jacobi forms

$$
\begin{aligned}
& \phi_{10}, \phi_{10} E_{4}, \phi_{10} E_{6}, \phi_{10} E_{10}, \phi_{10} E_{14}, \phi_{10} E_{16}, \phi_{10} \Delta, \phi_{10} E_{6}^{2}, \phi_{10} E_{8}^{2}, \phi_{10} \Delta E_{4}, \\
& \phi_{12}, \phi_{12} E_{8}, \phi_{12} E_{10}, \phi_{12} E_{6}^{2}, \phi_{12} \Delta, \phi_{12} E_{14},
\end{aligned}
$$

$\nu \in\{0,2,4\}$ and $g_{f, \nu}$ is the corresponding elliptic modular form which is determined by its first coefficients, e.g., we have

$$
\begin{array}{lll}
\mathcal{D}_{0}\left(\phi_{10}\right)=0, & \mathcal{D}_{2}\left(\phi_{10}\right)=20 \Delta, & \mathcal{D}_{4}\left(\phi_{10}\right)=0, \\
\mathcal{D}_{0}\left(\phi_{12}\right)=12 \Delta, & \mathcal{D}_{2}\left(\phi_{12}\right)=0, & \mathcal{D}_{4}\left(\phi_{12}\right)=196 \Delta E_{4}
\end{array}
$$

We solve the system recursively for the Fourier coefficients of the Jacobi forms. (To start the recursion the first Fourier coefficients of ϕ_{10}, ϕ_{12} are taken from [5].) This method needs only $O\left(|D|^{\frac{3}{2}}\right)$ operations to calculate a complete table of Fourier coefficients up to a "large" discriminant. Hence it is less "expensive" than the usual multiplication of Jacobi forms and elliptic modular forms $\left(O\left(|D|^{2}\right)\right)$.

Proceeding in this way and using a C++ computer program, we computed the Fourier coefficients $C(D)$ of the Jacobi forms in question for $|D| \leqslant 3000000$. Then we are able to compute any Fourier coefficient $a(n, r, m)$ of $\Upsilon_{20}, \ldots, \Upsilon_{26 b}$ with discriminant $4 m n-r^{2} \leqslant 3000000$.

In [12] Skoruppa calculates the eigenvalues $\lambda_{F}(p), \lambda_{F}\left(p^{2}\right)$ (p prime) of a Hecke eigenform

$$
F=\sum_{\substack{r, n, m \in \mathbb{Z}, r^{2}-4 m n<0, n, m>0}} a(n, r, m) q^{n} \zeta^{r} q^{\prime m} \in S_{k}\left(\Gamma_{2}\right)
$$

by means of the formulas

$$
\lambda_{F}(p) a(1,1,1)=a(p, p, p)+p^{k-2}\left(1+\left(\frac{p}{3}\right)\right) a(1,1,1)
$$

and

$$
\begin{aligned}
& \lambda_{F}\left(p^{2}\right) a(1,1,1) \\
& \quad=\left[\lambda_{F}(p)^{2}-\lambda_{F}(p) p^{k-2}\left(1+\left(\frac{p}{3}\right)\right)-p^{2 k-3}+p^{2 k-4}\left(\left(\frac{p}{3}\right)+\left(\frac{p}{3}\right)^{2}\right)\right] a(1,1,1) \\
& \quad-p^{k-2} a\left(1, p, p^{2}\right)-p^{k-2} \sum_{\substack{\nu \bmod p, 1+\nu+\nu^{2} \neq 0 \bmod p}} a\left(1+\nu+\nu^{2}, p(1+2 \nu), p^{2}\right),
\end{aligned}
$$

which are based on Andrianov's results in [2].

Using another C++ computer program, we computed the eigenvalues $\lambda_{F}(p)$ for $p<1000$ prime and $\lambda_{F}\left(p^{2}\right)$ for $p<71$ prime of $F=\Upsilon_{20}, \ldots, \Upsilon_{26 b}$ from the above formulas.

4. Summing up

By (7) we have

$$
Z_{F}\left(k-1, \chi_{D}\right)=\sum_{n=1}^{\infty} \lambda_{F, D}(n) g_{D}(n)
$$

where

$$
\begin{equation*}
g_{D}(n)=\frac{4(2 \pi)^{k}}{|D|^{k}(k-2)!} n^{-k+1} \int_{n}^{\infty} K_{k-2}\left(\frac{4 \pi \sqrt{y}}{|D|}\right) y^{\frac{k}{2}-1} \mathrm{~d} y . \tag{8}
\end{equation*}
$$

Now $g_{D}(n)$ is of exponential decay for $n \rightarrow \infty$ and $\lambda_{F, D}(n)$ is of polynomial growth. Thus for a numerical approximation of $Z_{F}\left(k-1, \chi_{D}\right)$ it is important to calculate as many terms as possible in the sum for small n (say $n \leqslant N$ for some N-we will later choose $N=4000$), while for large $n(n>N)$ the total sum of all terms with $n>N$ is rather small. Hence we approximate $Z_{F}\left(k-1, \chi_{D}\right)$ by

$$
\mathcal{Z}_{F, D}(k-1)=\sum_{\substack{1 \leqslant n \leqslant N \\ n \text { has no prime } \\ \text { divisor }>1000}} \lambda_{F, D}(n) g_{D}(n),
$$

where the values of $\lambda_{F, D}(n)$ can be calculated from the Euler product of $Z_{F, D}\left(s, \chi_{D}\right)$ for $n<71^{2}$.

Suppose there are positive constants $C_{1}, C_{2}, \alpha, \beta$ such that the estimates $\left|\lambda_{F}(p)\right|$ $\leqslant C_{1} \cdot p^{\alpha}$ (p prime) and $\left|\lambda_{F}(n)\right| \leqslant C_{2} \cdot n^{\beta}(n>N)$ hold. Then the error term

$$
\varepsilon(F, D)=Z_{F, D}(k-1)-\mathcal{Z}_{F, D}(k-1)
$$

can be estimated by

$$
\begin{align*}
|\varepsilon(F, D)| \leqslant & \sum_{\substack{p>1 \text { o00 } \\
p \text { prime } \\
1 \leqslant \nu \leqslant N / p}}\left|\lambda_{F, D}(\nu p)\right| g_{D}(\nu p) \tag{9}\\
& +\sum_{n>N}\left|\lambda_{F, D}(\nu n)\right| \int_{n}^{\infty} K_{k-2}\left(\frac{4 \pi \sqrt{y}}{|D|}\right) y^{\frac{k}{2}-1} \mathrm{~d} y .
\end{align*}
$$

Suppose now that $N<1007^{2}$. Then clearly for the first sum \sum_{1} in the above equation we have the estimate

$$
\begin{aligned}
\sum_{1} & =\sum_{\substack{p>1000 \\
p \text { prime } \\
1 \leqslant \nu \leqslant N / p}}\left|\lambda_{F, D}(\nu) \lambda_{F}(p)\right| g_{D}(\nu p) \\
& \leqslant C_{1} \sum_{\substack{p>100 \\
p \text { prime } \\
1 \leqslant \nu \leqslant N / p}}\left|\lambda_{F, D}(\nu)\right| p^{\alpha} g_{D}(\nu p)
\end{aligned}
$$

The second sum \sum_{2} in (9) satisfies

$$
\begin{aligned}
\frac{|D|^{k}(k-2)!}{4(2 \pi)^{k}} \sum_{2} & =\sum_{n>N}\left|\lambda_{F, D}(n)\right| n^{-k+1} \int_{n}^{\infty} K_{k-2}\left(\frac{4 \pi \sqrt{y}}{|D|}\right) y^{\frac{k}{2}-1} \mathrm{~d} y \\
& \leqslant C_{2} \sum_{n>N} n^{\beta-k+1} \int_{n}^{\infty} K_{k-2}\left(\frac{4 \pi \sqrt{y}}{|D|}\right) y^{\frac{k}{2}-1} \mathrm{~d} y \\
& \leqslant C_{2} \sum_{n>N} \int_{n}^{\infty} K_{k-2}\left(\frac{4 \pi \sqrt{y}}{|D|}\right) y^{\beta-\frac{k}{2}} \mathrm{~d} y \\
& \leqslant C_{2} \sum_{n>N} \sum_{m \geqslant n} \int_{m}^{m+1} K_{k-2}\left(\frac{4 \pi \sqrt{y}}{|D|}\right) y^{\beta-\frac{k}{2}} \mathrm{~d} y \\
& \leqslant C_{2} \sum_{m>N}(m-N) \int_{m}^{m+1} K_{k-2}\left(\frac{4 \pi \sqrt{y}}{|D|}\right) y^{\beta-\frac{k}{2}} \mathrm{~d} y \\
& \leqslant C_{2} \int_{N+1}^{\infty} K_{k-2}\left(\frac{4 \pi \sqrt{y}}{|D|}\right) y^{\beta-\frac{k}{2}}(y-N) \mathrm{d} y .
\end{aligned}
$$

For the estimation of the dominating term \sum_{1} in $\varepsilon(F, D)$ we use the result of Weissauer [14] that any eigenform $F \in S_{k}\left(\Gamma_{2}\right)$ which does not belong to the Maass space fulfills the Ramanujan-Petersson conjecture (i.e., all complex roots of $Z_{F, p}$ have absolute value $p^{\frac{3}{2}-k}$). Thus we have to choose $C_{1}=4, \alpha=k-\frac{3}{2}$ to obtain the best estimate for \sum_{1} possible by our methods.

The contribution of \sum_{2} to $\varepsilon(F, D)$ is absorbed by \sum_{1} if N is large enough, so we do not have to use the optimal estimate for $\lambda_{F}(n)$. One obtains a very crude (but simple and for our purpose sufficient) estimate for $\lambda_{F}(n)$ from the RamanujanPetersson conjecture if one uses $\sigma_{0}(n) \leqslant n$, namely

$$
\left|\lambda_{F}(n)\right| \leqslant \sum_{d \mid n} \sigma_{0}(d) \sigma_{0}\left(\frac{n}{d}\right) n^{k-\frac{3}{2}} \leqslant \sum_{d \mid n} n^{k-\frac{1}{2}}=\sigma_{0}(n) n^{k-\frac{1}{2}} \leqslant n^{k+\frac{1}{2}}
$$

Thus we set $C_{2}=1$ and $\beta=k+\frac{1}{2}$.
We choose $N=4000$ (then \sum_{2} is dominated by \sum_{1} for the D in question) and calculate the numerical approximations of $Z_{F}\left(k-1, \chi_{D}\right)$ and the corresponding error terms using Mathematica. From (1) we computed the constants C_{F} for $F=\Upsilon_{20}$, $\ldots, \Upsilon_{26 b}$ and $D=-3,-4,-7,-8$. The numerical results have been checked using Maple.

We obtain

Theorem. For $F=\Upsilon_{20}, \ldots, \Upsilon_{26 b}$ there are constants C_{F} such that equation (1) (i.e., Böcherer's conjecture) holds for $D=-3,-, 4-7,-8$ numerically up to 5 digits.

5. Numerical data

Table 1. Approximate constants C_{F} for $F=\Upsilon_{20}, \Upsilon_{22}$

D	$C_{\Upsilon_{20}}$	$C_{\Upsilon_{22}}$
-3	$2.0672152028688 \cdot 10^{11} \pm 0.5 \cdot 10^{-2}$	$1.3056685268290 \cdot 10^{12} \pm 0.5 \cdot 10^{-1}$
-4	$2.0672152028688 \cdot 10^{11} \pm 0.5 \cdot 10^{-2}$	$1.3056685268290 \cdot 10^{12} \pm 0.5 \cdot 10^{-1}$
-7	$2.0672152029206 \cdot 10^{11} \pm 2.9 \cdot 10^{1}$	$1.3056685268295 \cdot 10^{12} \pm 1.1 \cdot 10^{1}$
-8	$2.0672152028644 \cdot 10^{11} \pm 3.1 \cdot 10^{1}$	$1.3056685179067 \cdot 10^{12} \pm 1.1 \cdot 10^{6}$

TABLE 2. Approximate constants C_{F} for $F=\Upsilon_{24 a}, \Upsilon_{24 b}$

D	$C_{\Upsilon_{24 a}}$	$C_{\Upsilon_{24 b}}$
-3	$1.0953372445194 \cdot 10^{13} \pm 0.5 \cdot 10^{0}$	$6.1388052839296 \cdot 10^{11} \pm 0.5 \cdot 10^{-2}$
-4	$1.0953372445194 \cdot 10^{13} \pm 0.5 \cdot 10^{0}$	$6.1388052839296 \cdot 10^{11} \pm 0.5 \cdot 10^{-2}$
-7	$1.0953372445111 \cdot 10^{13} \pm 8.7 \cdot 10^{2}$	$6.1388052891963 \cdot 10^{11} \pm 9.3 \cdot 10^{3}$
-8	$1.0953372445386 \cdot 10^{13} \pm 2.6 \cdot 10^{4}$	$6.1388034612038 \cdot 10^{11} \pm 1.3 \cdot 10^{6}$

Table 3. Approximate constants C_{F} for $F=\Upsilon_{26 a}, \Upsilon_{26 b}$

D	$C_{\Upsilon_{26 a}}$	$C_{\Upsilon_{26 b}}$
-3	$9.6155285745891 \cdot 10^{13} \pm 0.5 \cdot 10^{0}$	$6.2328839505417 \cdot 10^{12} \pm 0.5 \cdot 10^{-1}$
-4	$9.6155285745891 \cdot 10^{13} \pm 0.5 \cdot 10^{0}$	$6.2328839505417 \cdot 10^{12} \pm 0.5 \cdot 10^{-1}$
-7	$9.6155285746522 \cdot 10^{13} \pm 1.1 \cdot 10^{4}$	$6.2328839505729 \cdot 10^{12} \pm 2.3 \cdot 10^{2}$
-8	$9.6155285333968 \cdot 10^{13} \pm 8.2 \cdot 10^{6}$	$6.2328839821394 \cdot 10^{12} \pm 1.6 \cdot 10^{5}$

Table 4. The first Fourier coefficients of $\Upsilon_{20}, \ldots, \Upsilon_{26 b}$

D	n, r, m	Υ_{20}	Υ_{22}	$\Upsilon_{24 a}$	$\Upsilon_{24 b}$	$\Upsilon_{26 a}$	$\Upsilon_{26 b}$
-3	$1,1,1$	1	1	1	3	1	3
-4	$1,0,1$	4	-12	-16	76	-8	124
-7	$1,1,2$	56	1344	4408	-616	-7456	51632
-8	$1,0,2$	2616	216	44256	-2904	15216	-109752
-11	$1,1,3$	-55077	409779	-1147701	2122593	-1180509	7299177
-12	$1,0,3$	408832	468448	-378272	11995968	3505408	-39833376
-12	$2,2,2$	-840960	-2215680	-795324	18309504	9218340	495227520

Table 5. The first eigenvalues of Υ_{20}

n	$\lambda(n)$
2	-840960
3	346935960
5	-5232247240500
7	2617414076964400
11	1427823701421564744
13	-83773835478688698980
17	14156088476175218899620
19	146957560176221097673720
23	-7159245922546757692913520
29	1055528218470800414110149180
31	4031470549468367403585068224
37	-154882657977 740251483442365940
41	1126683124934949617518831346964
43	74572686686194644813168430600
47	-13773335 595379978013820602730720
53	29292488702536161643591933657260
59	521943213201995351655113144025960
61	896978197899858751399574623768444
67	-2921787486641 381474027809454434280
2^{2}	248256200704
3^{2}	-452051040393665991
5^{2}	-94655785156653029446859375
7^{2}	-5501629950184780949434983315951
11^{2}	-126258221861417704499584077355164268151
13^{2}	2528254555352510520887488261241887242369
17^{2}	262144933510286336089464293262250165947750889
19^{2}	-283417759450334375466210009895464677379295086759
23^{2}	127862428522278879932688110084314434400497569566129
29^{2}	408550299154535330723926336201059419422405306949883361
31^{2}	-9417686481892622568784061821415683057728289096885473471
37^{2}	4270657975661931417960508434757260969748219593839247065169
41^{2}	129620395091878626890240343719327738119688391311944613269369
43^{2}	-2118391905744174698890014439813915105652042393393982400772151
47^{2}	10717867956150312430187083192735560357439349298395760667696609
53^{2}	-6359983052359692969 866068986893310598482880773029488944413754191
59^{2}	159291906542794821742879348124552646753906149121778952350318431721
61^{2}	-653805853261332407170328486766159640869797840457778124369821593951
67^{2}	25254882862606589034647035623760404781292970925413106240956567868089

References

[1] M. Abramowitz, I. Stegun: Pocketbook of mathematical functions. Verlag Harri Deutsch, (1984). MR 85j:00005b
[2] A. Andrianov: Euler products corresponding to Siegel modular forms of genus 2. Russ. Math. Surveys 29, No.3, 45-116 (1974). MR 55:5540
[3] S. Böcherer: Bemerkungen über die Dirichletreihen von Koecher und Maass. Math. Gottingensis, Schriftenr. d. Sonderforschungsbereichs Geom. Anal. 68, (1986).
[4] S. Böcherer, R. Schulze-Pillot: The Dirichlet series of Koecher and Maass and modular forms of weight 3/2. Math. Z. 209, No.2, 273-287 (1992). MR 93b:11053
[5] M. Eichler, D. Zagier: The theory of Jacobi forms. Progress in Mathematics, Vol. 55. Boston-Basel-Stuttgart: Birkhäuser (1985). MR 86j:11043
[6] W. Kohnen: On character twists of certain Dirichlet series. Mem. Fac. Sci. Kyushu Univ., vol. 47, 103-117 (1993). MR 94c:11044
[7] W. Kohnen, J. Sengupta, A. Krieg: Characteristic twists of a Dirichlet series for Siegel cusp forms. Manuscripta Math. 87, 489-499 (1995). MR 96f:11071
[8] W. Kohnen, N.-P. Skoruppa A certain Dirichlet series attached to Siegel modular forms of degree two. Invent. Math. 95, 541-558 (1989). MR 90b:11050
[9] M. Kuß: Die getwistete Spinor Zeta Funktion und die Böcherer Vermutung. Dissertation. (2000)
[10] A.F. Lavrik: Functional equations of Dirichlet functions. Soviet Math. Dokl. 7, 1471-1473 (1966). MR 34:4464
[11] H. Maass: Ueber eine Spezialschar von Modulformen zweiten Grades. I, II, III Invent. Math. 52, 95-104 (1979), Invent. Math. 53, 249-253, 255-265 (1979). MR 80f:10031; MR 81a:11037; MR 81a:11038
$[\rightarrow$ N.P. Skoruppa: Computations of Siegel modular forms of genus two. Math. Comput. 58, 381-398 (1992). MR 92e:11041
[13] J.L. Waldspurger: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl. (9) 60, 375-484 (1981). MR 83h:10061
[14] R. Weissauer: The Ramanujan conjecture for genus two Siegel modular forms (an application of the trace formula). Preprint, Mannheim (1993)

Universität Heidelberg, Mathematisches Institut, Im Neuenheimer Feld 288, D-69120 Heidelberg, Germany

E-mail address: winfried@mathi.uni-heidelberg.de
Universität Heidelberg, Mathematisches Institut, Im Neuenheimer Feld 288, D-69120 Heidelberg, Germany

E-mail address: michael.kuss@urz.uni-heidelberg.de

[^0]: Received by the editor October 20, 1999 and, in revised form, January 3, 2001.
 2000 Mathematics Subject Classification. Primary 11F46.

