SOME NUMERICAL COMPUTATIONS CONCERNING SPINOR ZETA FUNCTIONS IN GENUS 2 AT THE CENTRAL POINT

WINFRIED KOHNEN AND MICHAEL KUSS

ABSTRACT. We numerically compute the central critical values of odd quadratic character twists with respect to some small discriminants D of spinor zeta functions attached to Seigel-Hecke eigenforms F of genus 2 in the first few cases where F does not belong to the Maass space. As a result, in the cases considered we can numerically confirm a conjecture of Böcherer, according to which these central critical values should be proportional to the squares of certain finite sums of Fourier coefficients of F.

1. INTRODUCTION

In [3], Böcherer made an interesting conjecture concerning central critical values of odd quadratic character twists of spinor zeta functions attached to cuspidal Siegel–Hecke eigenforms of genus 2.

More precisely, let F be a nonzero cuspidal Hecke eigenform of even integral weight k w.r.t. the Siegel modular group $\Gamma_2 := \operatorname{Sp}_2(\mathbb{Z})$ and denote by $Z_F(s)$ $(\operatorname{Re}(s) \gg 0)$ its spinor zeta function. Recall [2] that $Z_F(s)$ completed with appropriate Γ -factors has a meromorphic continuation to \mathbb{C} and is invariant under $s \mapsto 2k - 2 - s$. Let $Z_F(s, \chi_D)$ ($\operatorname{Re}(s) \gg 0$) be the twist of $Z_F(s)$ by the quadratic character $\chi_D = \left(\frac{D}{\cdot}\right)$, where D < 0 is a fundamental discriminant. Assume that $Z_F(s, \chi_D)$ enjoys similar analytic properties as $Z_F(s)$. Then according to [3], there should exist a constant $C_F > 0$, depending only on F, such that

(1)
$$Z_F(k-1,\chi_D) = C_F |D|^{1-k} \Big(\sum_{\{T>0 \mid \operatorname{discr} T = D\}/\Gamma_1} \frac{a(T)}{\varepsilon(T)}\Big)^2,$$

where a(T) (*T* a positive definite half-integral (2,2)-matrix) is the *T*-th Fourier coefficient of F, $\varepsilon(T) := \#\{U \in \Gamma_1 \mid T[U] = T\}$ (with $\Gamma_1 := \operatorname{SL}_2(\mathbb{Z}), T[U] = U^t T U$) is the order of the unit group of *T* and the summation in (1) extends over all *T* with discriminant equal to *D*, modulo the action $T \mapsto T[U]$ by Γ_1 .

In [3], Böcherer proved his conjecture in the case where F is the Maass lift of a Hecke eigenform f of weight 2k - 2 w.r.t. Γ_1 . The proof combines four inputs: i) the fact that $Z_F(s) = \zeta(s - k + 1)\zeta(s - k + 2)L(f, s)$, where L(f, s) is the Hecke L-function of f [5]; ii) Waldspurger's theorem [13] on the relation between central critical values of quadratic twists of L(f, s) and squares of Fourier coefficients of modular forms of half-integral weight; iii) the explicit description of the Maass

Received by the editor October 20, 1999 and, in revised form, January 3, 2001.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11F46.

lift on the level of Fourier coefficients [2]; and finally iv) Dirichlet's classical class number formula.

Later on, Böcherer and Schulze-Pillot [4] proved an identity similar to (1) in the case of levels, where now F is the Yoshida lift of an elliptic cusp form.

Also in [3], a formula like (1) in the case where F is a Siegel- or Klingen-Eisenstein series was shown to be true.

The proof in all the above cases makes essential use of the fact that the spinor zeta function in question is a product of "known" *L*-series.

To the best of our knowledge, nothing regarding Böcherer's conjecture seems to be known in the case where F is a "true" Siegel modular form, i.e., is not a lift of an automorphic form on GL₂ (and so $Z_F(s)$ is not expected to split).

In the present paper, we would like to present some numerical data supporting the conjecture for small values of D in the first few "nontrivial" cases when F is of weight 20, 22, 24 resp. 26 and is not a Maass lift. It turns out that for those Fand for D = -3, -4, -7, -8 identity (1) numerically is true at least up to 5 digits with some constant $C_F > 0$ independent of D (Thm., §4; numerical data are given in §5).

The first ingredient in the computation is a certain series representation (found by the first author many years ago) for central critical values of spinor zeta functions supposing "good" analytic properties of $Z_F(s, \chi_D)$ as required in the conjecture. We were kindly informed by D. Goldfeld that this series representation can also be derived from the more general work of Lavrik [10] when appropriately specialized. The formula for computing $Z_F(k-1, \chi_D)$ is given in §2.

Note that the holomorphic continuation of $Z_F(s, \chi_D)$ was proved in [6],[7] (using some round-about via Rankin–Dirichlet series) under the assumption that the first Fourier–Jacobi coefficient of F is nonzero. The latter condition is satisfied at least for all F with $k \leq 32$ according to Skoruppa [12]. The functional equation, however, was proved only very recently in [9].

The second main ingredient, which is entirely due to the second author, is the computation of the eigenvalues $\lambda_F(p)$ (*p* a prime < 1000) and $\lambda_F(p^2)$ (*p* a prime < 71) under the usual Hecke operators T_p resp. T_{p^2} of the *F* in question, following the method of Skoruppa [12] and an appropriate C++ computer program. This is presented in §3.

In §4, the results of §§2 and 3 are combined to calculate $Z_F(k-1,\chi_D)$ for the F and D in question with "good" accuracy. For an estimation of the error term we use the bounds for the eigenvalues of F implied by the Ramanujan-Petersson conjecture, for the latter cf. [14].

We finally remark that we have also numerically re-checked (1) using the identity given in §2 in case F is of weight 20, resp. 22, and is in the Maass space. We have not included the details here.

2. A SERIES REPRESENTATION FOR CENTRAL VALUES OF SPINOR ZETA FUNCTIONS

Let $k \in 2\mathbb{N}$ and write $S_k(\Gamma_2)$ for the space of Siegel cusp forms of weight k w.r.t. Γ_2 . If $F \in S_k(\Gamma_2)$ is a nonzero Hecke eigenform, we let

(2)
$$Z_F(s) = \prod_{p \text{ prime}} Z_{F,p}(p^{-s})^{-1} \qquad (\operatorname{Re}(s) \gg 0)$$

be the spinor zeta function of F, where

$$Z_{F,p}(X) = 1 - \lambda_F(p)X + (\lambda_F(p)^2 - \lambda_F(p^2) - p^{2k-4})X^2 - \lambda_F(p)p^{2k-3}X^3 + p^{4k-6}X^4$$

is the local spinor polynomial at p and $\lambda_F(p)$ resp. $\lambda_F(p^2)$ are the eigenvalues of F under the usual Hecke operator T_p resp. T_{p^2} .

According to Andrianov [2] the function

$$Z_F^{\star}(s) = (2\pi)^{-2s} \Gamma(s) \Gamma(s-k+2) Z_F(s)$$

has a meromorphic continuation to \mathbb{C} and is invariant under $s \mapsto 2k - 2 - s$. It is holomorphic everywhere if F is not contained in the Maass space (which is equivalent to saying $Z_F(s)$ is not of the form $Z_F(s) = \zeta(s - k + 1)\zeta(s - k + 2)$ $\times L(f,s)$, where f is a normalized cuspidal Hecke eigenform of weight 2k - 2 w.r.t. Γ_1 , and L(f,s) is its associated Hecke L-function [5]).

If D < 0 is a fundamental discriminant, we define the twist of $Z_F(s)$ by χ_D as

(3)
$$Z_F(s,\chi_D) := \prod_{p \text{ prime}} Z_{F,p}(\chi_D(p)p^{-s})^{-1} \quad (\operatorname{Re}(s) \gg 0)$$

We denote the *n*-th coefficient of the Dirichlet series $Z_F(s, \chi_D)$ by $\lambda_{F,D}(n)$.

We put

$$Z_F^{\star}(s,\chi_D) := \left(\frac{2\pi}{|D|}\right)^{-2s} \Gamma(s) \Gamma(s-k+2) Z_F(s,\chi_D) \qquad (\operatorname{Re}(s) \gg 0).$$

If F is in the Maass space, then by well-known properties of twists of $\zeta(s)$ and $L(f,s), Z_F^*(s,\chi_D)$ extends to an entire function, is of rapid decay for $\operatorname{Im}(s) \to \infty$ and is invariant under $s \mapsto 2k - 2 - s$. It is very natural to expect that the same holds for general F (cf. [3]). In fact, if F is not in the Maass space and the first Fourier–Jacobi coefficient of F is nonzero, this was proved in [6],[7],[9] (using the fact $\|\phi_1\|^2 Z_F(s) = D_F(s)$, where ϕ_1 is the first Fourier–Jacobi coefficient of F and $D_F(s)$ is a Rankin type Dirichlet series formed out of the Fourier–Jacobi coefficients of F introduced in [8]).

Let $F \in S_k(\Gamma_2)$ be a Hecke eigenform such that $Z_F(s, \chi_D)$ has the above analytic properties. Using the integral transform

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s)\Gamma(s-k+2)y^{-s} \mathrm{d}s = 2y^{-\frac{k}{2}+1}K_{k-2}(2\sqrt{y}) \qquad (y>0, \ c>k-2),$$

where $K_{k-2}(y)$ denotes the modified Bessel function of order k-2, we have for y > 0 and $c \gg 0$

(4)

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} Z_F^*(s, \chi_D) y^{-s} \mathrm{d}s$$

$$= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \left(\frac{2\pi}{|D|}\right)^{-2s} \Gamma(s) \Gamma(s-k+2) \sum_{n=1}^{\infty} \lambda_{F,D}(n) n^{-s} y^{-s} \mathrm{d}s$$

$$= \sum_{n=1}^{\infty} \lambda_{F,D}(n) \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s) \Gamma(s-k+2) \left(\frac{4\pi^2 n y}{D^2}\right)^{-s} \mathrm{d}s$$

$$= y^{-\frac{k}{2}+1} f_{F,D}(y),$$

where

$$f_{F,D}(y) = 2\left(\frac{4\pi^2}{D^2}\right)^{-\frac{k}{2}+1} \sum_{n=1}^{\infty} \lambda_{F,D}(n) n^{-\frac{k}{2}+1} K_{k-2}\left(\frac{4\pi\sqrt{ny}}{|D|}\right).$$

Since $Z_F^{\star}(s, \chi_D)$ is holomorphic and of rapid decay for Im $s \to \infty$, we may shift the path of integration in (4) to the line c = k - 1. We replace y by $\frac{1}{y}$ and apply the functional equation of $Z_F^{\star}(s, \chi_D)$ to obtain

$$y^{\frac{\kappa}{2}-1}f_{F,D}\left(\frac{1}{y}\right) = \frac{1}{2\pi i} \int_{k-1-i\infty}^{k-1+i\infty} Z_F^{\star}(s,\chi_D) y^s \mathrm{d}s = \frac{1}{2\pi i} \int_{k-1-i\infty}^{k-1+i\infty} Z_F^{\star}(2k-2-s,\chi_D) y^s \mathrm{d}s = \frac{1}{2\pi i} \int_{k-1-i\infty}^{k-1+i\infty} Z_F^{\star}(s,\chi_D) y^{2k-2-s} \mathrm{d}s = y^{\frac{3}{2}k-1} f_{F,D}(y),$$

i.e., the function $f_{F,D}(y)$ satisfies the functional equation $f_{F,D}(\frac{1}{y}) = y^k f_{F,D}(y)$.

Using the usual splitting trick and the formula

$$2\int_{0}^{\infty} K_{k-2}(2\sqrt{y})y^{s-\frac{k}{2}} dy = \Gamma(s)\Gamma(s-k+2) \qquad (\operatorname{Re}(s) > k-2),$$

we conclude for $\operatorname{Re}(s) \gg 0$ that

(5)

$$\begin{aligned} Z_F^{\star}(s,\chi_D) &= 2\Big(\frac{2\pi}{|D|}\Big)^{-2s} \sum_{n=1}^{\infty} \lambda_{F,D}(n) n^{-s} \int_0^{\infty} K_{k-2}(2\sqrt{y}) y^{s-\frac{k}{2}} \mathrm{d}y \\ &= 2\Big(\frac{2\pi}{|D|}\Big)^{-2s} \sum_{n=1}^{\infty} \lambda_{F,D}(n) n^{-s} \Big(\frac{4\pi^2 n}{D^2}\Big)^{s-\frac{k}{2}+1} \int_0^{\infty} K_{k-2}\Big(\frac{4\pi\sqrt{ny}}{|D|}\Big) y^{s-\frac{k}{2}} \mathrm{d}y \\ &= \int_0^{\infty} f_{F,D}(y) y^{s-\frac{k}{2}} \mathrm{d}y = \int_1^{\infty} f_{F,D}(y) (y^{\frac{3}{2}k-2-s} + y^{s-\frac{k}{2}}) \mathrm{d}y. \end{aligned}$$

As $f_{F,D}(y)$ is of exponential decay for $y \to \infty$, the right hand side of (5) has a holomorphic continuation to the whole complex plane, and (5) is valid for all $s \in \mathbb{C}$.

Setting s = k - 1 in (5), we get the formulas

$$Z_{F}^{\star}(k-1,\chi_{D}) = 4\left(\frac{4\pi^{2}}{D^{2}}\right)^{-\frac{k}{2}+1} \int_{1}^{\infty} \sum_{n=1}^{\infty} \lambda_{F,D}(n) n^{-\frac{k}{2}+1} K_{k-2}\left(\frac{4\pi\sqrt{ny}}{|D|}\right) y^{\frac{k}{2}-1} \mathrm{d}y$$

$$= 4\left(\frac{4\pi^{2}}{D^{2}}\right)^{-\frac{k}{2}+1} \sum_{n=1}^{\infty} \int_{1}^{\infty} \lambda_{F,D}(n) n^{-\frac{k}{2}+1} K_{k-2}\left(\frac{4\pi\sqrt{ny}}{|D|}\right) y^{\frac{k}{2}-1} \mathrm{d}y$$

$$= 4\left(\frac{4\pi^{2}}{D^{2}}\right)^{-\frac{k}{2}+1} \sum_{n=1}^{\infty} \lambda_{F,D}(n) n^{-k+1} \int_{n}^{\infty} K_{k-2}\left(\frac{4\pi\sqrt{y}}{|D|}\right) y^{\frac{k}{2}-1} \mathrm{d}y.$$

Hence

(7)
$$Z_F(k-1,\chi_D) = \frac{4(2\pi)^k}{|D|^k(k-2)!} \sum_{n=1}^{\infty} \lambda_{F,D}(n) n^{-k+1} \int_n^\infty K_{k-2}\left(\frac{4\pi\sqrt{y}}{|D|}\right) y^{\frac{k}{2}-1} \mathrm{d}y,$$

where the exponential decay of $K_{k-2}(y)$ for $y \to \infty$ justifies the interchange of summation and integration in (6).

1600

3. NUMERICAL COMPUTATIONS

Let $M_k(\Gamma_1)$ be the space of elliptic modular forms of weight k w.r.t. Γ_1 and $S_k(\Gamma_1)$ be the subspace of cusp forms in $M_k(\Gamma_1)$. For $\tau \in \mathbb{C}$, $\operatorname{Im}(\tau) > 0$, write $q = \exp(2\pi i \tau)$, and let

$$\Delta = q \prod_{n=1}^{\infty} (1 - q^n)^{24}$$

be the Ramanujan Δ -function in $S_{12}(\Gamma_1)$ and

$$E_{2k} = 1 - \frac{4k}{B_{2k}} \sum_{n=1}^{\infty} \sigma_{2k-1}(n) q^n \qquad (k \in \mathbb{Z}, \ k \ge 2, \ \sigma_{2k-1}(n) = \sum_{d|n} d^{2k-1},$$
$$B_{2k} = 2k \text{th Bernoulli number})$$

be the normalized Eisenstein series in $M_{2k}(\Gamma_1)$.

If $J_{k,1}^{\text{cusp}}$ denotes the space of Jacobi cusp forms on Γ_1 of index 1 and weight k, the Maass space [11] is the image of the Hecke equivariant embedding $V: J_{k,1}^{\text{cusp}} \hookrightarrow S_k(\Gamma_2)$ defined by

$$\phi = \sum_{\substack{D,r \in \mathbb{Z}, D < 0 \\ D \equiv r^2 \mod 4}} C_{\phi}(D) q^{(r^2 - D)/4} \zeta^r$$
$$\longmapsto \sum_{\substack{n,r,m \in \mathbb{Z} \\ r^2 - 4mn < 0, \\ n,m > 0}} a(n,r,m) q^n \zeta^r q'^m,$$

where

$$a(n,r,m) := \sum_{d \mid (n,r,m)} d^{k-1} C_{\phi} \left(\frac{r^2 - 4mn}{d^2} \right)$$

and

$$\zeta = \exp(2\pi i z)(z \in \mathbb{C}), \qquad q' = \exp(2\pi i \tau')(\tau' \in \mathbb{C}, \operatorname{Im}(\tau') > 0).$$

By ϕ_{10} resp. ϕ_{12} we denote the Jacobi cusp forms in the one-dimensional spaces $J_{10,1}^{\text{cusp}}$, resp. $J_{12,1}^{\text{cusp}}$, normalized to C(-3) = 1.

The first cuspidal Hecke eigenforms for genus 2 that do not belong to the Maass space appear in weight 20, 22, 24, resp. 26, and are denoted $\Upsilon_{20}, \ldots, \Upsilon_{26b}$ in [12]. In [12], Skoruppa gives explicit formulas for them (involving the forms $V(\phi)$, where ϕ are appropriate Jacobi forms) and calculates some of their Fourier coefficients. Note that there is a misprint in the formula for Υ_{22} ; the corrected formula is

$$\begin{split} \Upsilon_{22} &= -2^5 \cdot 3 \cdot 5 \cdot 7 \cdot 1423 \cdot V(\phi_{10}) V(\phi_{12}) \\ &+ V(-\frac{5}{2\cdot 3} \phi_{12} E_{10} + \frac{11}{2\cdot 3} \phi_{10} E_6^2 + 2^4 \cdot 3 \cdot 61 \cdot \phi_{10} \Delta). \end{split}$$

To compute the coefficients of the relevant Jacobi forms ϕ , we proceed slightly differently from [12] and try to avoid multiplication of Jacobi modular forms with elliptic modular forms. More precisely, the operator $\mathcal{D}_{2\nu}$ is defined by

$$\mathcal{D}_{2\nu}\phi := \sum_{n=0}^{\infty} \left(\sum_{r} p_{2\nu}^{(k-1)}(r,nm)c(n,r)\right) q^n \qquad (\nu \in \mathbb{Z}, \ \nu \ge 0)$$

where $\phi = \sum_{n,r} c(n,r) q^n \zeta^r \in J_{k,m}^{\mathrm{cusp}}$ and

$$\frac{(k-\nu-2)!}{(2\nu)!(k-2)!} p_{2\nu}^{(k-1)}(r,n) = \text{coefficient of } t^{2\nu} \text{ in } (1-rt+nt^2)^{-k+1}$$

maps $J_{k,1}^{\text{cusp}}$ to $S_{k+2\nu}(\Gamma_1)$ [5].

We consider the system of equations $\{\mathcal{D}_{2\nu}(f) = g_{f,\nu}\}$ where f is one of the Jacobi forms

$$\phi_{10}, \phi_{10}E_4, \phi_{10}E_6, \phi_{10}E_{10}, \phi_{10}E_{14}, \phi_{10}E_{16}, \phi_{10}\Delta, \phi_{10}E_6^2, \phi_{10}E_8^2, \phi_{10}\Delta E_4, \\ \phi_{12}, \phi_{12}E_8, \phi_{12}E_{10}, \phi_{12}E_6^2, \phi_{12}\Delta, \phi_{12}E_{14},$$

 $\nu \in \{0, 2, 4\}$ and $g_{f,\nu}$ is the corresponding elliptic modular form which is determined by its first coefficients, e.g., we have

$$\begin{aligned} \mathcal{D}_0(\phi_{10}) &= 0, & \mathcal{D}_2(\phi_{10}) = 20\Delta, & \mathcal{D}_4(\phi_{10}) = 0, \\ \mathcal{D}_0(\phi_{12}) &= 12\Delta, & \mathcal{D}_2(\phi_{12}) = 0, & \mathcal{D}_4(\phi_{12}) = 196\Delta E_4. \end{aligned}$$

We solve the system recursively for the Fourier coefficients of the Jacobi forms. (To start the recursion the first Fourier coefficients of ϕ_{10} , ϕ_{12} are taken from [5].) This method needs only $O(|D|^{\frac{3}{2}})$ operations to calculate a complete table of Fourier coefficients up to a "large" discriminant. Hence it is less "expensive" than the usual multiplication of Jacobi forms and elliptic modular forms $(O(|D|^2))$.

Proceeding in this way and using a C++ computer program, we computed the Fourier coefficients C(D) of the Jacobi forms in question for $|D| \leq 3\,000\,000$. Then we are able to compute any Fourier coefficient a(n,r,m) of $\Upsilon_{20}, \ldots, \Upsilon_{26b}$ with discriminant $4mn - r^2 \leq 3\,000\,000$.

In [12] Skoruppa calculates the eigenvalues $\lambda_F(p)$, $\lambda_F(p^2)$ (p prime) of a Hecke eigenform

$$F = \sum_{\substack{r,n,m\in\mathbb{Z},\\r^2-4mn<0,\\n,m>0}} a(n,r,m)q^n \zeta^r {q'}^m \in S_k(\Gamma_2)$$

by means of the formulas

$$\lambda_F(p)a(1,1,1) = a(p,p,p) + p^{k-2} \left(1 + \binom{p}{3}\right) a(1,1,1)$$

 and

$$\begin{split} \lambda_F(p^2)a(1,1,1) &= \left[\lambda_F(p)^2 - \lambda_F(p)p^{k-2}\left(1 + \left(\frac{p}{3}\right)\right) - p^{2k-3} + p^{2k-4}\left(\left(\frac{p}{3}\right) + \left(\frac{p}{3}\right)^2\right)\right]a(1,1,1) \\ &- p^{k-2}a(1,p,p^2) - p^{k-2}\sum_{\substack{\nu \mod p, \\ 1 + \nu + \nu^2 \not\equiv 0 \mod p}} a(1 + \nu + \nu^2, p(1 + 2\nu), p^2), \end{split}$$

which are based on Andrianov's results in [2].

1602

Using another C++ computer program, we computed the eigenvalues $\lambda_F(p)$ for $p < 1\,000$ prime and $\lambda_F(p^2)$ for p < 71 prime of $F = \Upsilon_{20}, \ldots, \Upsilon_{26b}$ from the above formulas.

4. SUMMING UP

By (7) we have

$$Z_F(k-1,\chi_D) = \sum_{n=1}^{\infty} \lambda_{F,D}(n) g_D(n),$$

where

(8)
$$g_D(n) = \frac{4(2\pi)^k}{|D|^k (k-2)!} n^{-k+1} \int_n^\infty K_{k-2} \left(\frac{4\pi\sqrt{y}}{|D|}\right) y^{\frac{k}{2}-1} \mathrm{d}y.$$

Now $g_D(n)$ is of exponential decay for $n \to \infty$ and $\lambda_{F,D}(n)$ is of polynomial growth. Thus for a numerical approximation of $Z_F(k-1,\chi_D)$ it is important to calculate as many terms as possible in the sum for small n (say $n \leq N$ for some N—we will later choose N = 4000), while for large n (n > N) the total sum of all terms with n > N is rather small. Hence we approximate $Z_F(k-1,\chi_D)$ by

$$\mathcal{Z}_{F,D}(k-1) = \sum_{\substack{1 \leqslant n \leqslant N \ n \text{ has no prime} \ ext{divisors} 1\,000}} \lambda_{F,D}(n) g_D(n),$$

where the values of $\lambda_{F,D}(n)$ can be calculated from the Euler product of $Z_{F,D}(s,\chi_D)$ for $n < 71^2$.

Suppose there are positive constants C_1, C_2, α, β such that the estimates $|\lambda_F(p)| \leq C_1 \cdot p^{\alpha}$ (p prime) and $|\lambda_F(n)| \leq C_2 \cdot n^{\beta}$ (n > N) hold. Then the error term

$$\varepsilon(F,D) = Z_{F,D}(k-1) - \mathcal{Z}_{F,D}(k-1)$$

can be estimated by

(9)
$$\begin{aligned} |\varepsilon(F,D)| &\leq \sum_{\substack{p>1\,000\\p \text{ prime}\\1 \leqslant \nu \leqslant N/p}} |\lambda_{F,D}(\nu p)| g_D(\nu p) \\ &+ \sum_{n>N} |\lambda_{F,D}(\nu n)| \int_n^\infty K_{k-2} \left(\frac{4\pi\sqrt{y}}{|D|}\right) y^{\frac{k}{2}-1} \mathrm{d}y. \end{aligned}$$

Suppose now that $N<1007^2.$ Then clearly for the first sum \sum_1 in the above equation we have the estimate

$$\sum_{1} = \sum_{\substack{p > 1 \ 000\\ p \ prime\\ 1 \leqslant \nu \leqslant N/p}} \left| \lambda_{F,D}(\nu) \lambda_{F}(p) \right| g_{D}(\nu p)$$
$$\leqslant C_{1} \sum_{\substack{p > 1 \ 000\\ p \ prime\\ 1 \leqslant \nu \leqslant N/p}} \left| \lambda_{F,D}(\nu) \right| p^{\alpha} g_{D}(\nu p).$$

The second sum \sum_2 in (9) satisfies

$$\begin{split} \frac{|D|^{k}(k-2)!}{4(2\pi)^{k}} \sum_{2} &= \sum_{n>N} |\lambda_{F,D}(n)| n^{-k+1} \int_{n}^{\infty} K_{k-2} \left(\frac{4\pi\sqrt{y}}{|D|}\right) y^{\frac{k}{2}-1} \mathrm{d}y \\ &\leqslant C_{2} \sum_{n>N} n^{\beta-k+1} \int_{n}^{\infty} K_{k-2} \left(\frac{4\pi\sqrt{y}}{|D|}\right) y^{\frac{k}{2}-1} \mathrm{d}y \\ &\leqslant C_{2} \sum_{n>N} \int_{n}^{\infty} K_{k-2} \left(\frac{4\pi\sqrt{y}}{|D|}\right) y^{\beta-\frac{k}{2}} \mathrm{d}y \\ &\leqslant C_{2} \sum_{n>N} \sum_{m\geqslant n} \int_{m}^{m+1} K_{k-2} \left(\frac{4\pi\sqrt{y}}{|D|}\right) y^{\beta-\frac{k}{2}} \mathrm{d}y \\ &\leqslant C_{2} \sum_{m>N} (m-N) \int_{m}^{m+1} K_{k-2} \left(\frac{4\pi\sqrt{y}}{|D|}\right) y^{\beta-\frac{k}{2}} \mathrm{d}y \\ &\leqslant C_{2} \int_{N+1}^{\infty} K_{k-2} \left(\frac{4\pi\sqrt{y}}{|D|}\right) y^{\beta-\frac{k}{2}} (y-N) \mathrm{d}y. \end{split}$$

For the estimation of the dominating term \sum_{1} in $\varepsilon(F, D)$ we use the result of Weissauer [14] that any eigenform $F \in S_k(\Gamma_2)$ which does not belong to the Maass space fulfills the Ramanujan-Petersson conjecture (i.e., all complex roots of $Z_{F,p}$ have absolute value $p^{\frac{3}{2}-k}$). Thus we have to choose $C_1 = 4$, $\alpha = k - \frac{3}{2}$ to obtain the *best* estimate for \sum_1 possible by our methods. The contribution of \sum_2 to $\varepsilon(F, D)$ is absorbed by \sum_1 if N is large enough, so we

do not have to use the optimal estimate for $\lambda_F(n)$. One obtains a very crude (but simple and for our purpose sufficient) estimate for $\lambda_F(n)$ from the Ramanujan-Petersson conjecture if one uses $\sigma_0(n) \leq n$, namely

$$|\lambda_F(n)| \leqslant \sum_{d|n} \sigma_0(d) \sigma_0(\frac{n}{d}) n^{k-\frac{3}{2}} \leqslant \sum_{d|n} n^{k-\frac{1}{2}} = \sigma_0(n) n^{k-\frac{1}{2}} \leqslant n^{k+\frac{1}{2}}.$$

Thus we set $C_2 = 1$ and $\beta = k + \frac{1}{2}$. We choose $N = 4\,000$ (then \sum_2 is dominated by \sum_1 for the *D* in question) and calculate the numerical approximations of $Z_F(k-1,\chi_D)$ and the corresponding error terms using Mathematica. From (1) we computed the constants C_F for $F = \Upsilon_{20}$, ..., Υ_{26b} and D = -3, -4, -7, -8. The numerical results have been checked using Maple.

We obtain

Theorem. For $F = \Upsilon_{20}, \ldots, \Upsilon_{26b}$ there are constants C_F such that equation (1) (i.e., Böcherer's conjecture) holds for D = -3, -4, -7, -8 numerically up to 5 digits.

SPINOR ZETA FUNCTIONS

5. NUMERICAL DATA

TABLE 1. Approximate constants C_F for $F = \Upsilon_{20}, \Upsilon_{22}$

D	C _{Y20}	C _{Y22}
-3	$2.0672152028688\cdot10^{11}\pm0.5\cdot10^{-2}$	$1.3056685268290\cdot10^{12}\pm0.5\cdot10^{-1}$
-4	$2.0672152028688\cdot10^{11}\pm0.5\cdot10^{-2}$	$1.3056685268290\cdot10^{12}\pm0.5\cdot10^{-1}$
-7	$2.0672152029206\cdot 10^{11}\pm 2.9\cdot 10^{1}$	$1.3056685268295\cdot10^{12}\pm1.1\cdot10^{1}$
-8	$2.0672152028644\cdot 10^{11}\pm 3.1\cdot 10^{1}$	$1.3056685179067\cdot 10^{12}\pm 1.1\cdot 10^{6}$

TABLE 2. Approximate constants C_F for $F = \Upsilon_{24a}, \Upsilon_{24b}$

D	$C_{\Upsilon_{24a}}$	C _{Y24b}
-3	$1.0953372445194\cdot10^{13}\pm0.5\cdot10^{0}$	$6.1388052839296\cdot 10^{11}\pm 0.5\cdot 10^{-2}$
-4	$1.0953372445194\cdot10^{13}\pm0.5\cdot10^{0}$	$6.138805283929 6\cdot 10^{11} \pm 0.5\cdot 10^{-2}$
-7	$1.0953372445111\cdot10^{13}\pm8.7\cdot10^{2}$	$6.1388052891963\cdot 10^{11}\pm 9.3\cdot 10^{3}$
-8	$1.0953372445386\cdot10^{13}\pm2.6\cdot10^{4}$	$6.1388034612038\cdot10^{11}\pm1.3\cdot10^{6}$

TABLE 3. Approximate constants C_F for $F = \Upsilon_{26a}, \Upsilon_{26b}$

D	$C_{\Upsilon_{26a}}$	С _{Т26b}
-3	$9.6155285745891\cdot10^{13}\pm0.5\cdot10^{0}$	$6.2328839505417\cdot10^{12}\pm0.5\cdot10^{-1}$
-4	$9.6155285745891\cdot10^{13}\pm0.5\cdot10^{0}$	$6.2328839505417\cdot10^{12}\pm0.5\cdot10^{-1}$
-7	$9.6155285746522\cdot10^{13}\pm1.1\cdot10^{4}$	$6.2328839505729\cdot 10^{12}\pm 2.3\cdot 10^2$
-8	$9.6155285333968\cdot 10^{13}\pm 8.2\cdot 10^{6}$	$6.2328839821394\cdot 10^{12}\pm 1.6\cdot 10^{5}$

TABLE 4. The first Fourier coefficients of $\Upsilon_{20}, \ldots, \Upsilon_{26b}$

D	n,r,m	Υ_{20}	Υ_{22}	Υ_{24a}	Υ_{24b}	Υ_{26a}	Υ_{26b}
-3	1, 1, 1	1	1	1	3	1	3
-4	1, 0, 1	4	-12	-16	76	-8	124
-7	1,1,2	56	1344	4408	-616	-7456	51632
-8	1,0,2	2616	216	44256	-2904	15216	-109752
-11	1, 1, 3	-55077	409779	-1147701	2122593	-1180509	7299177
-12	1,0,3	408832	468448	-378272	11995968	3505408	-39833376
-12	2,2,2	-840960	-2215680	-795324	18309504	9218340	495227520

WINFRIED KOHNEN AND MICHAEL KUSS

TABLE 5. The first eigenvalues of Υ_{20}

n	$\lambda(n)$
2	-840 960
3	346 935 960
5	-5232247240500
7	2617414076964400
11	1427823701421564744
13	-83 773 835 478 688 698 980
17	14156088476175218899620
19	146957560176221097673720
23	-7159245922546757692913520
29	1055528218470800414110149180
31	4031470549468367403585068224
37	-154882657977740251483442365940
41	1126683124934949617518831346964
43	74572686686194644813168430600
47	-13773335595379978013820602730720
53	29 292 488 702 536 161 643 591 933 657 260
59	521 943 213 201 995 351 655 113 144 025 960
61	896978197899858751399574623768444
67	-2921787486641381474027809454434280
22	248 256 200 704
32	-452051040393665991
5 ²	-94655785156653029446859375
72	-5501629950184780949434983315951
112	-126258221861417704499584077355164268151
13 ²	2528254555352510520887488261241887242369
172	262144933510286336089464293262250165947750889
19 ²	-283417759450334375466210009895464677379295086759
23 ²	127862428522278879932688110084314434400497569566129
29 ²	408550299154535330723926336201059419422405306949883361
312	-9417686481892622568784061821415683057728289096885473471
372	4270657975661931417960508434757260969748219593839247065169
41 ²	129620395091878626890240343719327738119688391311944613269369
43 ²	-2118391905744174698890014439813915105652042393393982400772151
47 ²	10717867956150312430187083192735560357439349298395760667696609
53 ²	-6359983052359692969866068986893310598482880773029488944413754191
59 ²	159291906542794821742879348124552646753906149121778952350318431721
61 ²	-653805853261332407170328486766159640869797840457778124369821593951
67 ²	25254882862606589034647035623760404781292970925413106240956567868089

SPINOR ZETA FUNCTIONS

References

- M. Abramowitz, I. Stegun: Pocketbook of mathematical functions. Verlag Harri Deutsch, (1984). MR 85j:00005b
- [2] A. Andrianov: Euler products corresponding to Siegel modular forms of genus 2. Russ. Math. Surveys 29, No.3, 45-116 (1974). MR 55:5540
- [3] S. Böcherer: Bemerkungen über die Dirichletreihen von Koecher und Maass. Math. Gottingensis, Schriftenr. d. Sonderforschungsbereichs Geom. Anal. 68, (1986).
- [4] S. Böcherer, R. Schulze-Pillot: The Dirichlet series of Koecher and Maass and modular forms of weight 3/2. Math. Z. 209, No.2, 273-287 (1992). MR 93b:11053
- M. Eichler, D. Zagier: The theory of Jacobi forms. Progress in Mathematics, Vol. 55. Boston-Basel-Stuttgart: Birkhäuser (1985). MR 86j:11043
- [6] W. Kohnen: On character twists of certain Dirichlet series. Mem. Fac. Sci. Kyushu Univ., vol. 47, 103-117 (1993). MR 94c:11044
- W. Kohnen, J. Sengupta, A. Krieg: Characteristic twists of a Dirichlet series for Siegel cusp forms. Manuscripta Math. 87, 489-499 (1995). MR 96f:11071
- [8] W. Kohnen, N.-P. Skoruppa A certain Dirichlet series attached to Siegel modular forms of degree two. Invent. Math. 95, 541-558 (1989). MR 90b:11050
- M. Kuß: Die getwistete Spinor Zeta Funktion und die Böcherer Vermutung. Dissertation. (2000)
- [10] A.F. Lavrik: Functional equations of Dirichlet functions. Soviet Math. Dokl. 7, 1471-1473 (1966). MR 34:4464
- [11] H. Maass: Ueber eine Spezialschar von Modulformen zweiten Grades. I, II, III Invent. Math. 52, 95-104 (1979), Invent. Math. 53, 249-253, 255-265 (1979). MR 80f:10031; MR 81a:11037; MR 81a:11038
- [12] N.P. Skoruppa: Computations of Siegel modular forms of genus two. Math. Comput. 58, 381-398 (1992). MR 92e:11041
- [13] J.L. Waldspurger: Sur les coefficients de Fourier des formes modulaires de poids demi-entier.
 J. Math. Pures Appl. (9) 60, 375-484 (1981). MR 83h:10061
- [14] R. Weissauer: The Ramanujan conjecture for genus two Siegel modular forms (an application of the trace formula). Preprint, Mannheim (1993)

UNIVERSITÄT HEIDELBERG, MATHEMATISCHES INSTITUT, IM NEUENHEIMER FELD 288, D-69120 HEIDELBERG, GERMANY

E-mail address: winfried@mathi.uni-heidelberg.de

UNIVERSITÄT HEIDELBERG, MATHEMATISCHES INSTITUT, IM NEUENHEIMER FELD 288, D-69120 HEIDELBERG, GERMANY

E-mail address: michael.kuss@urz.uni-heidelberg.de